fraber-
consulting

Barcelona, Frebruary 21™, 2002

Component
Architecture

fraber-
consulting

Part 1: Motivation & Intro
= Richness and Reach
= Applications

Libraries

Part 2: Libraries
= What is a Library?
= QOrganization Issues

Library Weight

Inheritance against
Aggregation
Small Interfaces

Contents

Part 3: Case Studies
= Java Beans
= Corba

= Visual Basic and
COM/DCOM

= Competitiveness
Marketplace

= Unix Tools

Part 4: Exercises
= Exercises

= Component Library
Guidelines

fraber-
consulting

Part 1:
Motivation & Intro

fraber-
consulting Richness and Reach

A

Custom build software module
Example: MS-Money: All about your money

SAP
Example: Instant Messenger

-

Universal module
Example: Instant Messenger

/

(ssauyory) uonezijerdads/Aljeuonoun4

>

Market Size (Reach)

fraber-]
consulting Rich/Reach:

Shared Development Cost

>

| A single company pays all

& Competitive edge for this
company if the application
allows strategic differentiation

Cost advantage for
commodity functionality

Development cost shared
amongst many companies

N

(ssauyory) uonezijenads/Alireuonoun4

>

Market Size (Reach)

fraber-
consulting

(ssauyory) uonezijenads/Alireuonoun4

A

No configuration cost
(custom application)

/

Rich/Reach:
Configuration Cost

Increasing application
complexity leads to
complex configuration

>

Market Size (Reach)

fraber- : _
consulting Rich/Reach:

Why SAP Is sO expensive

>

Development cost

SAP
Overall cost Oracle /

Project/
Open
Configuration cost

@ —

(ssauyory) uonezijenads/Alireuonoun4

>

Market Size (Reach)

fraber- : _
consulting Rich/Reach:

- Libraries Solve The Problem

Application Module 1

/ Application Module 2
/ Library:

Common functionality shared
across application modules

/ Strange module, cutting
/ through layers

| Core Libraries

/ / Infrastructure, “Core”

(ssauyory) uonezijerdads/Aljeuonoun4

>

Market Size (Reach)

fraber-
consulting

(ssauyory) uonezijenads/Alireuonoun4

>

e

Rich/Reach
Soocific | in Libraries
pecific library

Example: Does not make sense!!!

This Is where most
libraries are

Very Universal library
Example: glibc, Swing,
MFC, ...

>

Market Size (Reach)

fraber-
consulting

Part 2:
Libraries

fraber-
consulting

What is a Library?

= A collection of functionality shared across

several modules

= A collection of reusable objects/components

= Procedural

= Write a text on the
screen

= Determine the URL of a
HTML page

Object/Components
Drop-down list
Marketplace Logo
Menu

fraber-
consulting Lijbrary Organization Issues

Three Main Issues:

= Library Weight

= Aggregation against Inheritance
= Small Interface

frab_er-
consulting Library Weight

>

Configuration
complexity &
learning effort

T

Swing MFC

/

(ssauyory) uonezifernads/Alireuonoun4

Usefulness
Dead
Dead [,
/ / Deauo |
Specific Library General Library

>

Market Size (Reach)

fraber-
consulting Inheritance & Aggregation

Super-Object
A

Neighbor Object | « » | Neighbor Object

\/
Sub-Object

fraber-
consulting

Inheritance

HTML Image Component
A

v

Marketplace Logo Component

Inheritance:

“Is-a” Relationship

Registrese

//-AHORA
Plain GIF

/ / “CeramicaclUSTERS
Changes with the URL

fraber-
consulting

Neighbor Object

<

Aggregation: "Has-a"”
Relationship

Login |

Si usted ha olvidado su contrasefia,
pongase en contacto con: infofficeramicaclusters.com

» | Neighbor Object

Usuario:

Contrasena:

fraber-
consulting Inheritance & Aggregation

= The decision is not always clear
= (General rule: Avoid deep inheritance trees
= Aggregation is preferred today

fraber-

consulting Small Interfaces
= Design your libraries/ Bird
components with a vilocat
minimum number of yocation) » (Object
external access points Penguin 03
= Jtis not always clear Interface

how to do that.

= “Beauty” or “elegancy” of a library captures a
design with a small interface

fraber-
consulting

Part 3: Case
Studies

fraber-
consulting Project/Open

= Component Technology: Tcl
= Glue Code: HTML (.adp) or TCL (.tcl)
= Linking:

— HTML or Tcl

fraber-
consulting Java Beans

= Component Technology: Java
= Glue Code: Java
= Linking:
— Procedure calls for initialization and setup
— Events to communicate state changes to observers

fraber-
consulting Corba

= Component Technology: Any language

= Glue Code: ORB facilitated remote procedure
calls

= Linking:
— RPC, carrying procedure calls and events

frab_er-
consulting Visual Basic and COM/DCOM

= Component Technology: C++
= Glue Code: Visual Basic
= Linking:

— Procedure calls

frab_er-
consulting Unix Tools

= Component Technology: C
= Glue Code: Bash, Perl, ...
= Linking:

- Program execution

— TCP or Unix pipes

fraber-
consulting

Part 4: Exercises

fraber-
consulting Exercises

Use the guidelines on the next slide to develop
component architectures for the following
applications:

 The Project/Open system
e AJava ERP

« A CarConfigurator (Product Choicboard)
http://www.fraber.de/projects/car config/

 The Microsoft office family (Word, Excel, PowerPoint)

fraber-

consulting Component Library

Guidelines

- Application scenarios: Decide on the specificity/generality of - Are there already component libraries available in your
your library. Decide for your type of target application. Try to application scenario? Name them and fill out the following
stay more on the "specific" side, because specific components questions for each for them:
tend to be faster to develop. - What is the scenario/granularity of the library?

- What technology are they based on?

- Decide about the granularity of your component library. Make - Why are these libraries not applicable in your context?

sure that all components in your library are of the same level. - Analyze their design and identify their characteristics.

Group your components into several libraries if you identify
several levels. Define the following:

- Unit of abstraction

- What can you learn from their design for your library?
- How could you otherwise take advantage of them?

- Unit of accounting - How should the contracts for your component look like? Identify
. . common/repeated parameters/objects in the contract

- Unit of analysis specifications. Write some sample contracts and specify the

- Unit of compilation interfaces for them.

- Unit of delivery

Identify the language/formalism to implement your components

- Unit of dispute and your "Glue Code".

- Unit of extension - What is component code and what is glue code?

- Unit of fault containment - How are you going to specify the component interfaces?

- Unit of instantiation - How are you going to deal with version changes in
components?

- Unit of loading
- Unit of locality

Persistence and data storage: Do your components have to deal

- Unit of maintenance with persistent storage? How are you going to interface with the
, storage? Are there problems with transactions/concurrency or
- Unit of system management atomicity?

- Inheritance: How are you going to deal with inheritance? How
are you going to enforce a shallow inheritance hierarchy?

